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Chromatic polynomials of large triangular lattices 

R J Baxter 
Research School of Physical Sciences, The Australian National University, Canberra 
ACT 2601, Australia 

Received 24 December 1986 

Abstract. Evaluating the y colourings of a lattice is equivalent to solLing the q-state 
zero-temperature antiferromagnetic Potts model. This has recently been done exactly for 
an  infinite triangular lattice with q real. Here the results are extended to the full complex 
q plane, giving the limiting distribution of the zeros of the chromatic polynomial. The 
results are compared with finite lattice calculations and  the occurrence of isolated real 
zeros conberging on the Beraha numbers is noted. 

1. Introduction 

Let Zb(q; G),  or simply Z,(q),  be the number of ways of colouring the sites of a 
graph G of N sites with q colours, no two adjacent sites having the same colour. For 
instance, if G is a triangle (three sites with each pair connected), then Z N ( q )  = 

9(  q - 1)(  q - 2). In general, Z (  q )  is a polynomial in 4 of degree N. It is known as the 
‘chromatic’ polynomial. 

Chromatic polynomials have been of interest in graph theory for many years (Tutte 
1982, Biggs 1976). They are also of interest in physics, where we can regard the colours 
as states. Then Z,(q) is the partition function of a model where each site can be in 
one of q states; adjacent sites must be in different states. This is the zero-temperature 
limit of the antiferromagnetic Potts model (Wu 1982, Baxter 1982). In this context 
one usually focuses on the case when G is a large regular lattice. 

From both points of view it is interesting to study the zeros of Zh ( q )  in the complex 
q plane. There is a fascinating graph-theoretical conjecture (Beraha et a /  1978, 1979, 
1980) that some of the real zeros of Z,\ ( q )  occur (in the limit of G large) at the ‘Beraha 
numbers’ 

q = 2 + 2  cos(27rlr) r = 2, 3 , 4 , .  . . (1.1) 

The first three of these are q = 0, 1,2, which are certainly very special cases of the Potts 
model ( q  = 2 is the Ising case). The next is the golden number q = (3 + f i ) / 2  = 2.618, 
which case has been studied by Tutte (1970, 1973). The Potts model can be related 
to a staggered six-vertex model (Baxter et a1 1976) by a transformation that introduces 
a parameter 0 defined by 

(1.2) 

so we see that the Beraha numbers correspond simply to e = 27r/n. 
There is a considerable literature in physics on zeros of the partition function (Lee 

and Yang 1952, Asano 1970, Ruelle 1971, 1973, Suzuki and Fisher 1971, Thompson 

q = 2+  2 COS e 0 6 Re( e )  s 7r 
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1972, Monroe 1982,1983, Glasser et a1 1987a, b). They are a powerful way of studying 
the analyticity properties of the free energy and locating critical points. 

In a previous paper (Baxter 1986), an equivalence of Nienhuis (1982, 1984) was 
used to relate the chromatic polynomial of the triangular lattice of N sites to the 
partition function of a loop model on the honeycomb lattice of 2 N  sites. This latter 
problem is a special case of the Izergin and Korepin (1981) model. It can be solved 
by the Bethe ansatz method, which gives the ‘partition function per site’ 

w(q)= Iim Z N ( q ) ’ ”  (1.3) 
N - x  

the limit being taken through lattices large in both directions. 
More precisely, as is explained in 0 3, the method gives the nth root of one of the 

eigenvalues A ,  of the transfer matrix ( n  being the number of columns of the lattice). 
Provided A I  is the largest eigenvalue (in modulus), the result is W ( q ) .  

For q large it is easy to verify that A ,  is the largest eigenvalue. For q finite and 
complex the author knows of no tractable rigorous method of establishing if it is so. 
In order to answer this question, we have therefore resorted to a numerical study of 
finite lattices. 

Rather than performing a brute force calculation of all the eigenvalues for all 
complex q (which would not be very illuminating), we have numerically located the 
zeros of 2, (4 ) .  As is explained in 0 3, they must lie on the contours where the largest 
two eigenvalues cross (apart from a fixed number of isolated zeros). Thus we obtain 
a cut q plane, within which 2, is the largest eigenvalue, and within which our previous 
result applies. 

Extrapolating to large values of n,  this enables us to approximately divide the 9 
plane into three domains Z l ,  Z 2 ,  97, within which W (  q )  is analytic. 

We had a problem with the result (Baxter 1986) in that it took three different 
analytic forms for different ranges of q. These forms are not analytic continuations of 
one another and it was not clear precisely what the ranges were (nor  indeed whether 
2 ,  was the largest eigenvalue anyway). Now we can identify these three expressions 
with W ( 9 )  in the three domains CLl, 9:, P7, respectively. This is done in equations 
(4.7) and (4.2). Thus the function W ( q )  is piecewise analytic. 

Moreover, now we can exactly locate the boundaries of PI, Q2,  9,: in 4 it is 
shown that they must be the lines where the expressions for W ( q )  (in the adjacent 
domains) have equal modulus. The complex zeros of Z , ( q )  (for N large) must lie 
on these lines: we can also determine their limiting distribution. This is done in B 4 
and the results indicated in figure 5.  

We emphasise that we expect the results to be exact: the only way they could be 
wrong would be if the domain structure were more complicated. For instance, we 
cannot rule out the existence of a fourth domain within which W ( 9 )  has some yet 
different form. All we can say is that we have seen no sign of it.  

I n  B 5 we further discuss the finite lattice numerical results and remark that the 
distributions of the complex zeros do  appear to be converging (as the lattice size 
increases) to those of our infinite-lattice analytic calculations. This is evident in figures 
3 and 6. In  particular, there are complex zeros near q = 0 and q = 4, but they are very 
sparsely distributed. This is a reflection of the fact that W has weak singularities (all 
its derivatives exist but W is not analytic) at these points. There is a dense line of 
zeros vertically crossing the real axis at a point F between q = 2.5 and 4.0. 

The finite lattice results also reveal the presence of isolated real zeros of Z,(q) at 
the Beraha numbers to the left of F. As n increases, F moves to the right, so that for 
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an eight-column lattice (with cylindrical boundary conditions) F is about q = 3.4 and  
one sees the first six Beraha numbers ( r  = 2 , 3 , .  . . , 7  in (1.1)). 

For an infinitely large lattice, the point F in figure 5 is at q = qo, where 

qo = 3.819 67. . 

= 2 + 2  cos(2~/14 .6834. .  .) (1.4) 

so that ultimately we expect the first thirteen Beraha numbers ( r  = 2, . . . , 14) to occur 
for the triangular lattice. 

All the finite lattice results reported in PFI 3-5 are for the m x n triangular lattice 
of figure 1, with either free boundary conditions or with cylindrical (right-to-left) 
boundary conditions, where column n is regarded as followed by column 1. Section 
5 ends with a tentative discussion of the possible effects of toroidal boundary conditions. 

Finally, for comparison some corresponding results for the honeycomb and square 
lattices are given in 5 6. As one might expect, the zeros are not so smoothly distributed 
as those for the solvable triangular lattice case. 

2. Transfer matrices 

The transfer matrix method is well known in statistical mechanics (Baxter 1982) as a 
technique for simplifying partition functions and it can be applied to the chromatic 
polynomial (Biggs 1976, Martin 1986, 1987, Mattis 1987). Here we show how to build 
up  the matrix for the triangular lattice dichromatic polynomial (or Potts model) of 
which the chromatic polynomial is a special case. 

Consider the m x n triangular lattice 2’ shown in figure 1. It has N = nm sites. I t  
may have free boundary conditions (i.e. be as drawn), or it may have cylindrical 
boundary conditions (where columns n and 1 are linked by an  additional column of 
m horizontal and m - 1 diagonal edges). The possible effect of using toroidal boundary 
conditions is discussed in 5 5. 

Consider a general Potts model on 2’ (Wu 1982). With each site i of 3 associate 
a ‘spin’ or ‘colour’ (T, that can take the values 1 , .  . . , q (for the moment we take q to 

1 2 n 

Figure 1. The  m x n triangular lattice with m rows, n columns and  N = mn sites. 
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be a positive integer). The partition function is 

( 2 . l b )  

where U, K are arbitrary parameters related by 

u = e K - l  (2.2) 

and where the inner (ij) sum and product is over all edges (pairs of nearest-neighbour 
sites) i, j of 9 and the outer a sum is over all q N  values of all the spins. I t  is easily 
seen (Fortuin and Kasteleyn 1972, Baxter et a1 1976) that ( 2 . 1 ~ )  and ( 2 . l b )  are 
equivalent. Further, if  G is any graph on 2, containing I bonds and C connected 
components (counting each isolated site as a component), then 

The summation is over all graphs G that can be drawn on 2. The expression (2 .3)  is 
the dichromatic polynomial of 2 (Whitney 1932, Tutte 1967). 

As usual, we can express ZN in terms of a transfer matrix T that adds a row to 
the lattice 3. This matrix can in turn be factored into contributions corresponding to 
the individual edges. To d o  this, consider a row of spins a = { a , ,  
row v '={v{,  . . . , a ; }  above it. Define q" x q "  matrices U , ,  
Q I , . . . ,  0, by 

PI = U 1  + U z , - ,  

Q, = 1 + UU,, 

. . , U,}, with another 

. . ,  U,,, p ,  1 . .  . , P", 

where j = 1,. . . , n and a,+, = vI . It easily verified that 

In fact U I ,  . . . , U,, are the usual Temperley-Lieb operators (Temperley and Lieb 
1971, Baxter 1982, 0 12.4), apart from some trivial normalisation factors. 

For free boundary conditions, the transfer matrix is then 

where 
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( H  adds a row of horizontal edges to Y ;  PI QI . . . P,, adds the vertical and diagonal 
edges. More specifically, PI adds a vertical edge in column j ;  in (2 .7)  Q, adds a 
diagonal edge between columns j and j +  1, and in (2.8) it adds a horizontal edge.) 
The partition function is 

z& = [ 'HT"- ' (  (2.9) 

where 5 is the q"-dimensional column vector with all entries unity, i.e. (( a1 , . . . , U , )  = 1. 
Cylindrical boundary conditions are more complicated (particularly so because 2 

is triangular rather than square or honeycomb). They can be handled by considering 
a lattice of n S 1  columns (which means replacing n by n + l  in (2.4)-(2.8)), and  
multiplying H by U Z n t Z .  From (2.4) this is equivalent to introducing a factor 
S ( U , , + ~ ,  aI) in each row, i.e. to identifying column n + l  with column 1. 

Returning to the n-column case, we make a change of basis as follows. Consider 
a q"-dimensional column vector J of the type that can be formed by successively 
multiplying [ by PI ,  Q, and U).  For n = 3 its entries f ( a l , .  . . , a,) have the form 

f((.l> . ' . > a n )  =fl sf28(a1 9 ( + 2 )  SJ?8(a2 7 a 3 )  Sf48(al  9 a 3 )  +f58(al  3 a2 9 (+3)  (2.10) 

where 8 ( a ,  b, c)  = 1 if a = b = e, and 0 otherwise. 
For arbitrary n there is a similar expansion as a sum of products of delta functions. 

Each term in the sum can be represented graphically by a line of n points, with links 
(on or below the line) joining points i, j if a,, U, are arguments of the same delta 
function. The fourteen graphs for n = 4  are shown in figure 2,  for instance the ninth 
graph denotes the term 6 ( a l ,  a4)8(a,, a3). 

0 0 0 0  M O 0  O M 0  O O W  popo 
1 2 3 L  

Figure 2. The fourteen graphs consisting of a line of four points (labelled 1,. . . , 4  as  in 
the first graph)  linked below with no crossed links. 

Note that there is no graph in figure 2 corresponding to a term 8 ( a I ,  a3)8(az, a4). 
This would be represented by a graph with crossed links: in fact no such crossed link 
graphs occur (Temperley and  Lieb 1971). For general n there are 

c, = ( 2 n ) ! / [ n ! ( n +  I)!] (2.11) 

possible non-crossed graphs, and hence c, terms in the expansion o f f (  al , . , . , a,,). 
These c,, are the Catalan numbers (Sloane 1973, Gardner 1976). 

Still considering for definiteness the case n = 3, consider the effect of premultiplying 
f by U 1  or U,. From (2.4) and (2.10) 

(UI"f)<, I....., TI, = 4fl + f 2 + f 4 +  (4 f ,+f5)6(a , ,  a,) 
(2.12) 

(u2f),, , . . . , ~ , , = ( f l + f 2 ) s ( a l ,  a 2 ) + ( f 3 + f 4 + f 5 ) 8 ( a 1 ,  (+2> a 3 ) .  
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Thus U , f ,  U,f also have elements of the linear form (2.10), and similarly for 
U 3 , ,  . . , U,. This gives us a new five-dimensional basis for U , , .  . . , U,, and in par- 
ticular we see from (2.12) that 

Note also that these matrices are sparse: they have just one non-zero entry in each 
column, which is one unless it is a diagonal entry of U2j-l ,  in which case it is q. These 
properties turn out to apply generally. 

In this representation the vector 5 is 

_jj (2.14) 

while 5' is no  longer the transpose of 5 :  premultiplying (2.10) by the original t', we 
find that in the new representation 

5' = ( q 3 ,  q2 ,  q 2 ,  q 2 ,  4 )  

= ( 1 , 0 , 0 , 0 , 0 )  U ,  U 3 U 5 .  (2.15) 

Once we have obtained U , ,  . . . , Liz,,, 5, 5' in the new representation, we can again 
use the equations (2.5), (2.7)-(2.9) to evaluate Z,(q ,  U). This can be done for any n, 
but naturally the dimension c, of the new basis increases with n: 

C I ,  ~ 2 , .  . . = 1 ,2 ,5 ,  14,42, 132,429, 1430,. . . . (2.16) 

Note that q now enters the calculation only as the value of the non-zero diagonal 
entries of U , ,  U,, U , ,  . . . . Thus it can be allowed to take any value, real or complex. 
Then Z,(q, U )  should be regarded as defined by (2.3).  

So far in this section we have considered the general Potts model, where K or U 
is arbitrary. For the rest of this paper we shall specialise to the case when K + -a, 
i.e. when 

v = - 1 .  (2.17) 

The U summand in ( 2 . 1 ~ )  is then zero if any two adjacent sites have the same spin 
(or colour), otherwise it is one. Thus Z N ( q ,  -1) is the number of ways of colouring 
2 with q colours, i.e. the chromatic polynomial. We write it simply as Z,(q). 

2.1. Computations 

The prime aim of this paper is to analytically discuss the large lattice limit of the 
polynomial 2, ( q ) ,  but in doing so we are guided by the results of various finite lattice 
calculations. These have been obtained by iteratively evaluating the row vector f'= 
f H T " - '  for increasing values of m. From (2.7) and (2.8), this can be done simply 
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by successive postmultiplications by P I , .  . . , P, and Q 1 , .  . . , Q n - l  (in correct sequence). 
Since these matrices (in the new representation) have at most two non-zero entries in 
each column, the matrix multiplications simplify dramatically. For an arbitrary row 
vector f', with elements J;, j = 1, . . . , c , ,  we have 

(2.18) 

where U( r, j )  is the row location of the non-zero element of U, in column j ,  and A ,  = 1 
if u ( r , j )  =j, otherwise A ,  = O .  Thus one only needs to store the integers u(r, j)  and 
the current set of q polynomials 4. 

A further simplification is that each Qr is a singular matrix (in fact a projection 
operator), its column j being zero if u(2r, j)  =j, as is evident from (2.18). This means 
that many of the elements of the row vector f' (at any stage in the calculation) will 
be zero. To maximise the number of such zero elements, it is desirable to multiply by 
each Q, as soon as possible (there is some freedom of choice in the sequence, since 
Q, commutes with all the other P, Q matrices except P,-l and This is achieved 
by rewriting (2.7) as 

T = P i Q i P ~ Q i Q ~ P ~ Q ~ ,  . . On-iPnQn-1. (2.19) 

The coefficients of the polynomials 4 and Z,v(4) are integers. For even modest 
lattice sizes (e.g. 8 x 8)  they can be very large. It is a help to use q - 3 rather than 9 
as a variable, but even then the coefficients can be over sixteen digits long. We handled 
these efficiently by using FORTRAN and modular arithmetic (Baxter and Enting 1979, 
p 117). I t  is important to obtain the coefficients exactly: for example, the polynomials 
(x  + 1)64 and ( x +  l ) h 4 - ~ ' 2  differ only by one part in 10"' in their largest coefficient, 
yet have completely different distributions of zeros. 

3. The infinite strip 

Still considering the m x n triangular lattice of figure 1, we see from (2.9) that 

&here 2 , , ( 4 )  is the eigenvalue r of the transfer matrix T, and c,,(q) is a coefficient 
determined by the associated eigenvector. Both are independent of m. 

When m is big, the sum in (3.1) will be dominated by the term for which 1.lr,,(9)1 
is largest. As q is varied in the complex plane, the two largest eigenvalues may cross 
(in modulus) at some point 4( , .  Call the eigenvalues I , , , ( q )  and 2.,,(9). Then in the 
neighbourhood of 4,,  

(3.2) 
In general the functions c i , , ( q ) ,  c 2 , , ( 4 ) ,  l l n ( 9 ) ,  2 2 n ( q )  will be analytic and non-zero 
at 9,,, so their logarithms can be Taylor expanded in powers of 4 - 4".  I t  follows that 
the R H S  of (3.2) is a non-zero factor multiplied by 

(3.3) 

Here A, B, D are complex numbers independent of m, 4 is necessarily real and D is 
in general non-zero. 

ZY ( 4 )  - ci  n ( 9  ) . \ i n (  4 )'" + C z n  ( 4  ) ~ 1 2 n  ( 4 ) " ' .  

sinh{ i T ( A + m4 ) + ( B + mD 1 ( q - 9,))  + O[ ( 4 - 9(,) 'I}. 
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For m large, the expression (3.3) has zeros close to qo, at 

q = q , , - i . r r [ r + A + R ( m d , ) ] / ( m D )  (3.4) 

where r=0,*1,*2, . . .  and R ( x ) = x - [ x ]  is x modulo 1 .  Thus O s R ( x ) < l .  In the 
limit of m large i t  follows that Z, (q )  has a sequence of zeros close to q,,, evenly 
spaced on the line where l.ll,,(q)/ = / . . izn(q)/ .  

Considering the whole plane, it follows for m large that Z,(q) has a dense 
distribution of zeros (with spacing proportional to m-I )  on the contours 1 l , , , (q ) l  = 
1A2,,( q)1, i.e. where the two largest eigenvalues are equimodular. Further, since A , , , ( q )  
is by definition the largest eigenvalue, it cannot be zero (the transfer matrix cannot 
have all eigenvalues zero), so Z,v(u) can only have zeros when the largest two 
eigenvalues cross, apart possibly from isolated zeros due to the vanishing of c l (  u ) .  

Now consider figure 3 where the zeros of Z , ( q )  are plotted for n = 5 and m = 6, 12 
for a lattice with free boundaries. There are single real zeros at q = 0, 1,2 .618 .  . . , and 
a triple zero at q = 2.  The other zeros are distributed along curves in the complex q 
plane: as m increases the distribution becomes denser. 

Very similar behaviour is observed for other values of m and n and for cylindrical 
boundary conditions. The behaviour is consistent with the large m analysis given 
above, and leads one to conclude that the largest transfer matrix eigenvalues (in 
modulus) cross on curves in the complex plane that are located approximately as in 
figure 4. (For finite n it is not quite clear whether the curves actually join at B and 
E, but this does not affect the following discussion.) 

The eigenvalues .4,n(q) are algebraic functions of q whose only singularities are 
branch points. Crossing a branch cut is equivalent to changing from one eigenvalue 

+ 
+ A  

+ + +  + +  
+ 

+ a  A +  

+ I *+ + 
A +  

1” :-. .:s 1 
I 

-A 

Q + 
A +  

-I- 

t + + + + +  
+ 

Figure 3. The zeros of the chromatic polynomial Z ,  ( q )  in the complex q plane for two 
m x n triangular lattices with free boundaries: A 6 x 5 lattice, + 12 x 5 lattice. 
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Figure 4. Expected qualitative picture of the cut q plane within which the eigenvalue 
i l , , ( q )  is analytic for finite n. (The  particular curves shown are  based on the n = 5 case 
with free boundaries.)  The points A, C, D, G are branch points. There may also he  branch 
points a t  B and  E. 

to another. At the branch point ending the cut, the different eigenvalues must be equal. 
It follows that singularities of the largest eigenvalue A l , ( q )  must be associated with 
the endpoint of a line of zeros of Z , ( q )  (for m large). Thus .I ln(q) must be analytic 
in the q plane cut by the contours formed by the lines of zeros of Z , ( q )  in the limit 
of m large. These branch cut contours must be given by 

I . I X q ) l  = / ’ m q ) l  (3.5) 

where the supercripts (+) and (-1 denote the values of A l , ( q )  on either side of the 
branch cut. Wood (1985, 1987) has used the relation (3.5) to accurately estimate critical 
points. 

We therefore conclude that A , , , ( q )  is analytic in the cut q plane given qualitatively 
by figure 4. In the next section we shall show that this is consistent with our previous 
Bethe ansatz calculations. Further, the results of these calculations can be used to 
exactly locate ABC, DEG and BE in the limit of m and n large, and to obtain the 
limiting distribution of zeros on these curves. 

4. Berhe ansatz results 

In the earlier paper (Baxter 1986) we used the Bethe ansatz to obtain equations for 
A l n ( q ) .  They involve as intermediate variables a set of ‘wavenumbers’ k, , . . . , k, :  
there are many solutions, corresponding to the different eigenvalues. 
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For q real, we found a solution (for n large but finite) where k , ,  . . . , k ,  are real 
and distributed smoothly over some interval (-0, 0). For q large (positive or negative), 
it is readily verified that this gives the largest eigenvalue A , , ( q ) .  This solution can be 
followed to all real values of q by varying q and k , ,  . . . , k,  continuously. Since we 
expect A 1 , ( q )  to be analytic in the cut plane of figure 4, the Bethe ansatz solution 
should indeed give A , , ( q )  for all real q, provided that to the left of BE we use the 
continuation from the left (i.e. from q negative), while to the right we use the 
continuation from the right (from q positive large). 

Further, the crossover point where one switches from the left-solution to the 
right-solution is given by (3.4), where (+) and (-) refer to the two solutions. It is the 
point where the two eigenvalues cross. 

Now we take the limit of n large. The Bethe ansatz equations can then be solved 
explicitly by Fourier transforms. Define x, 0 by 

~ = ~ - x - x - ’ = ~ + ~ c o s  e 
1x1 < 1 O < R e ( O ) < x  

(4.1) 

and define three functions g l ( q ) ,  g2(q)  and g3(q)  by 

sinh[k( x -28) /2]  cosh[k(n  -28)/2] 
1 n g 2 ( q i = I T  - x  d k ~ ( [ s i n h ( s k , 2 ) ] ( 2 c o s h  k ~ - 1 ) - [ c o s h ( x k / 2 ) ] ( 2 c o s h  kO+1) 

(4.2b) 

sinh k0 sinh[k( x - e ) ]  j:x d k k  sinh xk [2 cosh k ( x -  0)-11 ’ 
In g 3 ( q )  = ( 4 . 2 ~ )  

For q real, q > 4 or q < 0, x is real (its sign is the opposite of q )  and so is g l (  9). For 
O <  q < 4 ,  0 is real and so are g2 (q )  and g,(q).  

For a large m x n lattice, with N = mn sites, we want to calculate the partition 
function per site 

W ( q ) =  Iim Z,,(q)”’ 
N - 1 

the limit being taken through m, n both large. From (3.1) 

W ( q )  = lim , ~ ~ , ~ ( q ) ’  ” 
,I -I 

(4.3) 

(4.4) 

provided *I,,,(q) is the largest ( i n  modulus) eigenvalue of the transfer matrix and  
c , n ( q )  + 0. 

The formulae (4.2) were obtained in the previous paper (equations (1.7), (1.9) and 
(5.3) of Baxter (1986)) as expressions for W ( q )  but it was not clear what their respective 
ranges of validity were. Now we can be precise. Take q to be real and , I l , , ( q l  to be 
the abovementioned eigenvalue, with k ,  , . . . , k ,  distributed over the interval (-Q, 0) .  
Then the limiting large-n value of l l l n ( a ) ” ”  is g , ( q )  provided q > 4  or q < O .  For 
O < q < 4 ,  g 2 ( q )  is the nth root of the right-continuation of ‘ I In(q), while g l ( q )  is the 
root of the left-continuation. Thus 

W ( q )  = g , ( q )  q > 4  or q < O  

= g * ( q )  90 < 4 < 4 (4.5a) 
= 0 < 9 < 9 0 .  
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Here 

qo = 3.819 67. . . (4.5b) 

is defined by 

g*(qo) = gdqo) .  (4.6) 

The results (4.5a) fail if c , , ( q )  =0, which happens at the isolated real zeros of Z, (q ) .  
This point is discussed in the next section. 

The function W ( q )  thus defined has a discontinuity in its derivative at q = qo.  It 
also has weak singularities at q = 0 and q = 4, where it has continuous derivatives of 
all orders but is not analytic. Such singularities are typical of Bethe ansatz calculations 
(Lieb and Wu 1972). This is consistent with the fact that, as n increases, the branch 
points A,F and C,D in figure 4 close in on the real axis at q = 0 and q = 4, dividing 
the complex plane into three domains 9,, g 2 ,  g 3 ,  as in figure 5. Within these domains 
A , , ( q )  is analytic, so we expect to be able to analytically continue the results (4.5) 
throughout the relevant domains, giving 

W ( q )  = g , ( q )  in domain 9, i = 1 ,  2,3. (4.7) 

4.1. Location of the lines of zeros ( N + w )  

The boundaries of 9,, g2, 3, are the lines occupied by the zeros of Z , ( q )  in the 
large lattice limit. From (3.4) and (4.4), they are given by the requirement that 1 W ( ( q ) l  
be continuous across them. Thus BAE is given by 

Ig , (q) l= Ig,(q)l. (4.8) 

Similarly, BCE is given by Ig , (q) l= lg2(q)1 and BE by lg2(q)l = / g3 (q ) l .  
We can also obtain the limiting distribution of zeros along these lines by noting 

that for m large they are the zeros of the R H S  of (3.2), i I , ( q )  and A z n ( q )  being the 
largest eigenvalues on the two sides of the domain boundary. In the limit of m large 
we can ignore the contributions from c , , ( q )  and c,,(q). Along BAE it follows that 
the zeros are the solutions of 

g1(qIN + g m N  =o.  (4.9) 

Similarly, along BCE they are solutions of g ,  ( 4 )  + g2( q)” = 0,  and on BE, of gz( q )  + 
g 3 ( q ) N  = 0. Note that these zeros must lie precisely on the boundaries Ig , (q) l= lg,(q)l. 

For complex values of q, the functions g z ( q ) / g l ( q )  and g3( q ) / g , (  q )  can be somewhat 
simplified by evaluating the integrals in (4.2) by summing over poles in the upper half 
k plane. It turns out that the contributions from the poles at k = i r  ( r  an integer) 
exactly cancel the denominator g , ( q ) .  

p = -exp(ilr2/38) y = e x p ( - 2 i r 2 / 3 ( r -  e ) ]  o = e x p ( 2 ~ i / 3 )  (4.10) 

then we obtain 

If we take Im( 0 )  < 0, Im( q )  > 0, and define 

(4.11) 
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In figure 5 we have plotted the domain boundaries (4.8), etc, together with the 
solutions of (4.9), etc, for N = 80. This gives a coarse-grained picture of the limiting 
large-N distribution of zeros: one can interpret the line interval between two successive- 
points as containing & of all the complex zeros of ZN (4). This is a convenient way 
of displaying the distribution: it can be compared directly with finite lattice results. 

The point B, where Ig,(q)l= /g,(q)/ = Ig3(q)l, is at q =4.100+0.650i, corresponding 
to 8 =0.509-0.626i. Along the curves BA, BC, BF the arguments of gl(q) /g3(q) ,  
g,(q)/g,(q) and g,(q)/g2(q) range monotonically over the intervals (-U,, O ) ,  (-U*, 0) 
and ( u1 + U?, r), respectively, where u1 = 2.3624. . . and u2 = 0.1223. . . . The total range 
of variation is therefore r, so the equations (4.9), etc, have the correct number of 
solutions, i.e. N / 2  above the real axis and N / 2  below. 

Note that g3(q)/gl(q)  involves 8 only via the parameter y.  Incrementing r/(r - 8 )  
by 3k, for any integer k, leaves y unchanged. It follows that the curve BAE in figure 
5 is just one of an infinite family of curves on which (4.8) is satisfied. The other curves 
lie inside BAE and rapidly converge on the point q = O .  

Similarly, there are curves obtainable from BCE by incrementing r/ 8 by 6k, which 
leaves p and g2(q)/gl(q)  unchanged. These lie to the left of BCE and converge on 
q = 4. We have ignored those alternative curves as the finite lattice calculations give 
no evidence of there being zeros on them, and the full set of complex zeros just fits 
onto BAE, BCE, BFE. 

Figure 5. Chromatic zeros in the large lattice limit: the curves and  points obtained by 
solving (4.8), etc, a n d  (4.9), etc (with N = 80). The points lie on  the curves, and  for clarity 
the curves are  only drawn where the points are  sparse. When N + CO the complex zeros 
are  continuously distributed along the curves, their density being proportional to the density 
of the points shown. Note that the curves divide the complex 9 plane into three domains 
9,, 9, a n d  9,. 
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5. Finite lattice results 

It is interesting to compare the limiting large lattice analytic results of 0 4 with those 
of finite m x n triangular lattices, where m - n. In the appendix we give the chromatic 
polynomials (in powers of q - 3) of the 6 x 6 and 8 x 8 lattices with free and cylindrical 
boundary conditions. The zeros of three of these polynomials are plotted in figure 6. 

1 + 

i + + + +  

Figure 6. Finite lattice numerical results: chromatic zeros for m x n triangular lattices with 
free and  cylindrical boundaries:  x 6 x 6 ,  A 8 x 8 free, + 8 x 8 cylindrical. They should be 
compared with the infinite lattice analytic results of figure 5. 

The first point to notice is that the complex zeros plainly lie on smooth curves, 
unlike, for instance, the zeros of the three-state Potts model (Martin 1985). This seems 
to be true generally, at least for rn, n 2 5, except that with cylindrical boundary 
conditions we have seen a couple of exceptional points on the right when n = 5 or 7. 
This may be connected with the fact that the three-sublattice structure of the triangular 
lattice (which ensures that it is three-colourable) is broken if cylindrical boundary 
conditions are imposed for n not a multiple of 3. It would be interesting to look at a 
nine-column cylindrical lattice, but this would involve local transfer matrices of 
dimension cI0 = 16 796, which would be a comparatively major task. (Typically our 
computer runs have taken tens of seconds on a shared VAX.)  

The zeros shown in figure 6 are not particularly close to the infinite lattice results 
of figure 5, but they d o  get closer as the lattice size increases. In  particular, note that 
the cylindrical lattice results are significantly closer than the free ones. This fits with 
the well known observation in statistical mechanics that periodic boundary conditions 
greatly reduce finite-size effects. Toroidal boundary conditions (discussed later in this 
section) would presumably reduce them further. The cylindrical conditions can be 
thought of as a 'halfway house' to fully periodic toroidal conditions, and indeed the 
corresponding zeros in figure 6 d o  lie about midway between those of the free 
boundaries finite lattice results, and  those of the infinite lattice. 
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Note also that the distribution of zeros in figure 6 is similar to the limiting distribution 
pictured in figure 5: they are densest along the near-vertical curve near q = 3 (the line 
BE in figure 5), very sparse near q = 0 (on BAE) and q = 4 (on BCE). This sparsity 
of zeros is related to the weakness of the singularities of W ( q )  at q = 0 and q = 4. 

5.1. Beraha numbers 

So far we have discussed only the lines of zeros in the complex plane, corresponding 
to the crossing of transfer matrix eigenvalues. However, in the finite lattice numerical 
results, isolated real zeros have been observed at or near q = O ,  1, 2, 2.618, 3, 3.247. 
These are the first six of the ‘Beraha numbers’: 

B, = 2 + 2  c o s ( 2 r l r )  r = 2 , 3 , 4  , . . . .  ( 5 . 1 )  

Beraha (Beraha et al 1978, 1980) has conjectured that some of the real zeros of 
chromatic polynomials of planar graphs should, in the limit of the graph becoming 
large, occur at points in the sequence (5.1). Certianly this is happening in those 
calculations. The zeros at q = 0, 1 ,2  are exact for finite n, due simply to the fact that 
three colours are needed to colour the triangular lattice. (For m, n 2 3 these zeros are 
simple, except that with free boundary conditions the q = 2 zero is a triplet.) 

As the lattice size increases, zeros appear close to the higher Beraha numbers. The 
real zeros greater than 2 of some finite lattices are shown in tables 1 and 2. It can be 
seen that a single zero near 

( 5 . 2 )  

appears for quite small lattices and tends rapidly to B5 as the lattice size increases. 
( I t  is not necessary for both m and n to tend to infinity: the zero tends to B,  as m + OC 

for fixed n 2 4.) 
For cylindrical boundary conditions with n not a multiple of 3, there is an exact 

zero at q = B, = 3.0. However, this is rather trivial as it is just a consequence of the 

B5 = 2.618 033 988 749 89. . . 

Table 1. Real zeros greater than 2 of chromatic polynomials o f  m x n triangular lattices 
with cylindrical boundary conditions, together with the intercept F of the line BE of 
complex zeros with the real axis. Note the rapid convergence of  the zeros to the Beraha 
numbers E , ,  E,, B,. 

m n First zero Second zero Third zero F 

4 4 2.617986010522 3.0t1 
5 4 2.618032967 355 3.0$// 
5 5 2.618033990394 3.0: 
6 5 2.618033988754 3.0: 3.19 
6 6 2.618033988750 3.001 033 706 3.13 
7 6 2.618033988750 3.000 125 270 3.15 
7 7 2.618033988750 3.0: 3.247 001 349 3.40 
8 7 2,618033988750 3.0: 3.246981 116 3.42t 
8 8 2.618033988750 3.0$ 3.246 979 602 3.40t 
9 8 2.618033988750 3.0: 3.246 979 604 3.42t 

t Extrapolation. 
$ Exact. 
5 Triple zero. 
11 Quadruple zero. 
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Table 2. The same data as for table I ,  but with free boundary conditions. 

m n First zero Second zero F 

4 4  
5 4  
5 5  
6 5  
6 6  
7 6  
7 7  
8 7  
8 8  
9 8  
- 

2.604 661 945 742 
2.616 620 513 049 
2.618 161 303 055 
2.618 032 I44 827 
2.618 033 979 731 
2.618 033 988 710 
2.618 033 988 750 
2.618 033 988 750 
2.618 033 988 750 
2.618 033 988 750 

2.80 
2.85: 
2.921 
2.95: 
2.98 

3.01 1 865 723 3.03 
3.000 359 694 3.10 
3.000 019 560 3.13 

f Extrapolation 

boundary conditions being mismatched for a three-colouring of the lattice. What is 
more interesting is that there is a single zero close to B, when n = 6 and rn 2 5, and  
for free boundary conditions when n 2 7 and rn 2 8. Again, they are converging rapidly 
(to E h )  as m increases (for fixed n). For the lattice with n = 6 columns and cylindrical 
boundary conditions, the numerical evidence (for rn = 5, . . . , 12) strongly suggests that 
9 -3K8-'" for m large. 

For cylindrical boundary conditions, with n 2 7 and rn 3: 5, we also see a single 
zero approaching 

B ,  = 3.246 979 6037. . . . (5.3) 

Provided m, n are sufficiently large ( 2 5  for free boundary conditions, 2 6  for 
cylindrical), the complex zeros form a pattern recognisably that of figures 3 and 6. 
There is a line BE of zeros vertically cutting the real axis at a point F between 9 = 2 
and 4. The value of 9 at F is also given in tables 1 and 2. There may or may not be 
a real zero actually at F: if there is not, we have obtained its value (denoted by t) by 
extrapolation from the nearby complex zeros. Notice that F generally increases with 
lattice size and there are never any real zeros to the right of F. 

Our numerical calculations are of course limited by computer time, so we have not 
calculated the chromatic zeros of lattices with more than eight columns. We have 
therefore not observed an isolated zero converging to E, = 3.4142. . . (or to any higher 
Beraha number) since F is not significantly larger than this even for the seven- and 
eight-column lattices with cylindrical boundary conditions. I t  seems likely that one 
would see such a zero for the nine-column lattice. 

As the lattice size increases ( in  both directions), it appears that the line BFE of 
zeros moves to the right, successively 'uncovering' Beraha number zeros as it does so. 
We can understand this in terms of (3.2), taking 1 , , , (9)  therein to be the 'left' eigenvalue 
obtained by continuation from negative values of 9 and ~ i 2 " ( 9 )  to be the 'right' 
eigenvalue obtained by continuation from 9 > 4 .  I f  c , , ( q )  has the Beraha numbers as 
zeros, while c, , ,(q) does not, then the Beraha numbers will be (for m large) zeros of 
Z,(9) only if they lie in  the domain 1 Z,,,(9)1 > /.lz,1(9)I, i.e. to the left of BFE. It may 
well be that, for n large, c , , ( q )  has all the Beraha numbers as zeros. 

From (4.56), the large lattice limit of the intersection F of  BE with the real axis is 
at 9 = 90, where qo is given by (1.4). It lies between B, ,  and B,5, so we expect only 
the Beraha numbers B 2 , .  . . , B, ,  to be the real zeros of the triangular lattice chromatic 
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polynomial. If c , , ( q )  = 0, the forms (4.3) then it is discontinuous at the Beraha numbers 
B , ,  . . . , B14,  having there the value zero; otherwise it is given by ( 4 . 5 ~ ) .  

5.2. Tutte's golden ratio theorem 

The Beraha number B5 is equal to 1 + 7, where 

T = ( 1 + &)/ 2 = 1.61 8. . . (5.4) 

is the 'golden ratio'. Quispel has alerted the author to a theorem of Tutte (1970), 
which states that if Y'  is a triangulation of the sphere and Z & ( q )  is the chromatic 
polynomial of Y'  (where N is the number of sites of Y ' ) ,  then 

( 5 . 5 )  

In fact our lattice 2 is not a triangulation of the sphere, since the exterior faces 
are not triangles. However, we can modify the m x n lattice Y with cylindrical boundary 
conditions to become such a triangulation. We d o  this by adding at the top a 'cap' 
consisting of a single new site connected to all the sites in the top row, and similarly 
at the bottom. The new lattice Y'  has 2 + mn sites. 

We calculated Z,v( 1 + 7 )  exactly for both Y and 27, expressing it in the form 
( a +  b7)7-', where a, b and k are integers; a and b have the same sign and 0 s  / b /  < la / .  
(This can be done by repeated use of 7' = T +  1 . )  We did this for 1 G m S 8 and 3 G n G 7 ,  
and for all these values we observed an intriguing property: 

( 5 . 6 )  

We have no proof of this relation, but assuming i t  to hold generally, i t  follows 

( 5 . 7 )  

for the m x n triangular lattice with cylindrical boundary conditions. 
This is really quite a remarkable result. For example, for a 7 x 7 lattice, , Z v ( q )  

(expressed as a polynomial in q - 3)  has integer coefficients as large as 10". Yet the 
R H S  of (5.7) is then of order lo-'! 

We of course find that (5 .7 )  is satisfied. In fact for the 6 x 6, 7 x 7 and 8 x 8 lattices 
the ratio of the L H S  to the RHS of (5 .7 )  is 0.246 X lo-*, 0.791 x lo-? and -0.176 x lo-?, 
respectively. Thus jZN( 1 + 7)1 is even smaller than Tutte's theorem requires. 

Another interesting property that was observed (again prompted by Quispel) 
concerned the m dependence for given n. Still considering cylindrical boundary 
conditions, for n = 3 and general q, 

IZ&( 1 + 7)l s T5-,&'. 

z Wl7 ( 1  + 7 )  = 72'~-2Z;+",n( 1 + 7 )  

n being the number of columns of Y and 2'. 

from ( 5 . 5 )  that 

I&,,( 1 + 7)l S 7Tl+~"-'"'' 

Z m , ( q ) = q ( q - l ) ( q - 2 ) ( q ' - 9 q ' + 2 9 q - 3 2 ) " - 1 .  (5.8) 
The simple power law dependence on m is due to the fact that the transfer matrix 
simplifies to being one-by-one, so there is only one term in the summation in (3.1). 
For n > 3  this is not the case for general q, but we observed from our exact integer 
arithmetic calculations that 

Z,,,JI + .) = 2 m - 1 7 7 - s m  

Zmd(  1 + 7 )  = 2m7"-Xm 

Zm5(1 + 7)  = ( 2 +  7 ) ( - 3 ) m - ' 7 1 * - ~ 0 w .  

(5 .9 )  
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Thus for q = 1 + T there is still only one non-zero term in the sum (3.1), even for n = 4 
and n = 5. 

For free boundaries Z,( 1 + T )  is still small, though in general not as small as for 
the cylindrical case. For the 5 x 5, 6 x 6, 7 x 7 and 8 x 8 lattices (with N = 25,36,49 
and 64), the values of T " - ~ Z ~  (1 + T )  are 5.658, 2.952, 2.058 and 0.852, respectively. 

5.3. Toroidal boundary conditions 

It would be interesting to repeat these calculations with toroidal boundary conditions. 
We have not yet done so because the calculation is considerably more complicated: 
one has to calculate the trace of Tm,  instead of a single matrix element. Even more 
seriously, one can no longer restrict attention to vectors f with elements of the form 
(2.10) (or its generalisation to higher n ) .  One has to consider all possible forms of 
f ( V I , .  . .,U,,). 

For these reasons, considerably more coding would be required and calculation 
time would be greatly increased. The author's guess is that the complex zeros would 
still form patterns similar to those of figure 6, but much closer to the infinite lattice 
limiting distribution of figure 5. 

The chromatic polynomial is now given by Z,,(q) = Tr T"', so (3.1) is replaced by 

Z , ( q ) = C  . L ( q ) " ' .  (5.10) 

At first sight one would conclude that the isolated Beraha number zeros no longer 
occur, since we associated them with the zeros of the coefficient c , , , ( q )  in (3.1). 
However, this argument would apply equally well to the cylindrical top-to-bottom 
lattice, which by symmetry has the same ZW ( q )  as the cylindrical right-to-left lattice 
discussed above, and which certainly does have isolated Beraha number zeros. 

The explanation may be connected with the fact that the eigenvalues are degenerate, 
with degeneracies proportional to 

d, =sin(rff/2)/sin(ff/p) r = 1 , 2 , 3 , .  . . (5.11) 

where ff is given by (4.1), and p = 1 if r is even or p = 2 if r is odd. (Kelland (1976) 
has observed such degeneracies in  a corner transfer matrix calculation on the Potts 
model.) These d, are polynomials in q and are integers if q is an  integer. For general 
values of q (in particular at the Beraha numbers ff = 2 x / r )  they can vanish, so this 
may provide a mechanism for (or  at least be connected with) the occurrence of zeros 
of ZN (4 )  at the Beraha numbers. 

r 

6. Other planar lattices 

The colouring problem is 'solvable' on the triangular lattice, in the sense that Z,(q) I" 

has been exactly calculated in the large lattice limit, being given by (4.2) and (4.5). 
The same has not been done for the honeycomb and square lattices. It is interesting 
to look at the distribution of the zeros of their chromatic polynomials, to see if they 
appear more complicated (and hence less likely to be amenable to exact solution) then 
those for the triangular lattice. 

The m x n square lattice can be obtained from the m x n triangular lattice of 
figure 1 by deleting all diagonal edges and the honeycomb (or 'brick') lattice by further 
deleting alternate vertical bonds. The results for the 8 x 8 lattices thus obtained, with 
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- 

+ 

both free and  cylindrical boundary conditions, are plotted in figures 7 and 8. For free 
boundaries the distributions are much less regular than for the triangular lattice. For 
cylindrical boundaries the zeros appear to be settling down onto fairly smooth curves 
(particularly for the square lattice). This is not surprising: as has been remarked by 
Wood (1985, 1987), and in 0 3 of this paper, in the limit of m large the zeros should 
be distributed along the contours I.\,,, = lAznl (apart from a fixed number of isolated 
zeros). They are still not as smoothly distributed as those of the triangular lattice. 

The distributions of zeros are further to the left than those for the triangular lattice, 
so the only Beraha number zeros we have observed in our calculations on  the square 
and honeycomb lattices (of up  to eight columns) are the trivial zeros at q = 0 and q = 1 
and a zero converging on q = 2. We have not observed any zero close to B 5 .  

For the honeycomb lattice with cylindrical boundary conditions there is a pair of 
complex conjugate zeros converging on the real axis at a point q = 1.7372. In figure 
8 they appear as a single point on the real axis. 

Our results for the square 2 x 15 lattice with cylindrical boundary conditions agree 
with those plotted by Biggs et a1 (1972). For the square and  honeycomb lattices we 
expanded the chromatic polynomials in powers of 4 - 2 ,  rather than 9-3  as the 
triangular case. 

At the end of § 2 we remarked on the need to calculate exactly the integer coefficients 
of the chromatic polynomials. Correspondingly, it is necessary to use a high degree 
of precision in calculating their zeros. All the plots shown in figures 3, 6, 7 and 8 were 
obtained using both double (16 significant figures) and quadruple (34 figures) precision. 
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Figure 7. Chromatic zeros for 8 x 8  square lattices (with 64 sites): A free boundary 
conditions, + cylindrical boundary conditions. 
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Figure 8. Chromatic zeros for 8 x 8 honeycon 
conditions, + cylindrical boundary conditions. 

lattices (with 6 sites): A free boundary 

For the 8 x 8 honeycomb free case (which has coefficients as large as 10l6) the double 
precision results were significantly in error. (For the other plots double precision was 
in fact adequate.) 

7. Summary 

For the triangular lattice colouring problem, we have exactly obtained the partition 
function per site W ( q )  = ZN(q) '" ,  in the limit of N large, for complex values of q. 
It is a piecewise analytic function, being analytic inside the three domains gI, g2, g 3  
indicated in figure 5 (except for removable discontinuities at the Beraha numbers inside 
B3). It is given by (4.2) and (4.7). 

The complex zeros of the chromatic polynomial Z,(q) are smoothly distributed 
along the boundaries between these domains, being given (for N large) by (4.9) and 
its corresponding equations. There are also real zeros at the Beraha numbers (1.1) 
lying inside 2B3, i.e. those with r = 2 , 3 ,  . . . , 14. (Provided the lattice has more than 
two rows and columns the real zeros are simple, except that with free boundary 
conditions the q = 2 zero is a triplet, and the m x 4 lattice with cylindrical boundary 
has a zero of degree m - 1 at q = 3.) 
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Appendix 

Chromatic polynomials, expressed in powers of A = q -3, for the 6 x 6  and 8 x  8 
triangular lattices with free and cylindrical boundary conditions. 

Free boundary: &(1+3) =13+23235+2651y+2025133+ 11490232+51460231+ 
189020P + 584653129 + is52753128 + 3595323Ln + 7349245Lx + 134058982~~ + 
22032973A2+ 329I5660L2) + 45063686An + 56%2494A2I + 66922695k2' + 73480554119 + 
7~7~~993~18 + 73428253~17 + 67071484116 + 57670576~1t 465650191~~ + 3518551oa~~ + 
24739365112 + 16088331211 + %077%11° + 5207475i9 + 2542931L8 + 1 10149217 + 
412%7A6+ 1340111~+352941~+73332~+ 1201A2+ 1131 + 6. 

1695776P+ 8190257P+ 34649815P+ i30z40997P5+ 439866761~~ +13471184421~~+ 
3769975297P+ 9704625168P+ 231 11424876P+ 5 1180977461~~~ +105885539163a4*+ 
205520234527147 + 37572l719836Le + 649320970171145 + 1064422431079LM + 
1660407868475~~) + 2471974783090~~2 + 35~20~9306153~~~ + 4814368552526~~~ + 
6328047479151139 + 801383483416113' + 9795246420053i.37 + 1 1572530664354a36 + 
13230615860137P + 1465387937%16P+ 15726338355 123~)~+ 16376898862342~~~ + 
I 65 16826779294131 + 161 91 I 61 8667881"+ 153~745%10507P+ 14130684075243128 + 
12530820986828P + 10800229167457P + 8991992513046~~~ + 71230189522671~~ + 
5628680867958P + 400328~0917soa~ + 298618~046357.P + 19643764544051.20 + 
1226915309592~~~ + 897992497288~~~ + 343428884399~1~ + 3427958048661.16 + 
98951234162~~~+ 4%39945093114+ 69898753299~13-289588060~4a12+ 33191581~35a" 
- 12222610723,1~0 + 50698534341~ - 3613798742 - 3~58763442~ + 306399218~~ - 
1097788542'+ 272346541'- 42129391) + 40224412 - 168251. + 6 

Free boundary: 4&+3) = + 31163 + 497162 + 5425A6I + 45038Lm+ 301876n59+ 

Cylindrical boundary: &,(1+3)= A M +  lZ135+901y+460~33+1875132t 6102~"+ 
17024.~~~ + 402751~~ + 848o7aZ8 + i598i8P7+ 267777P+ 4590091~ + 5813802~ + 
I 195436P+ 75 1 3 5 8 ~ ~ ~ +  ~0969601~~+ 321 138P+ 4852436~1~+ 6358229218-1352461~11~+ 
53455321116 - 89432823115+ 137671889214-126541 161113+ 66871236112+ 50533690a11- 
1362674881" + 15W2739A9 - 1039899871' + 41963@31A7 - 4864626A6 - 4083892L5 + 
2672347A4- 725248A3+ 10391112- 59111 + 6. 

Cylindrical boundary: i&(1+3) = AM + 16P3 + 168,~~~ + 1232L61+ 7364A6O+ 
360001~~+ 153800P+ 567336P7+ I 900570P+ 5626328155+ I 56 I 201 6iY+ 384064 i6P+ 
922022682.52 + 191369184151 + 417275308AM + 721891686149 + 1533882600248 + 
2 10688 1904147 + 468836 13881~ + 55066080941~5 + 8499 I 640561~ + 2966 I 234 I 84143 - 
591816039501~~ + 347586239912~~~ - 1095217712304~~0 + 3679807858352.139 - 
10707464540756a38 + 29644261659784~)~ - 7~2582134~6610~~+1770271~6662235 - 

378558448vm6 a" + 721363890325360 13) - 1161052503678924 132 + 
1349300918474536~ 31 - 162364815 1033601 M - 508~74613472~32a2~ + 
I9583 144 1 93887622Aa - 5 161462 1322827O401~' + I 1 14287617092575 1 2k6 - 
207079493998370752A+ 33663977585548 I I 801%- 4791 761 8 I 8604503041~~ + 
5907 18030298097012An- 61 3069613278 I67046L2l+ 498499842 165437 120k20 - 
241523624668435272~~~- 1025~847410884624~~~+ 43139570758446978411~ - 

391 14921 1058069704~~~ - 2147366125505722562~~+ 9107%70847818376~~~ - 
262055038461 I 18681~~ + 1993364667025224~9 + 28977023126598332 - 
2034367927841030 1' + 799957945904272 .I6 - 21673291069176015 + 
41460612053648~ - ww.6432544~) + 4307501857281~- 159357619201, . 

641866724571793624216+ 681901831674256912115- 573475672197725546214+ 
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